
. ' .

ICASE
LANGUAGE CONCEPTS FOR DISTRIBUTED PROCESSING

O F LARGE ARRAYS

P i y u s h Mehrotra

and

T e r r e n c e W. P r a t t

Report No. 82-14

June 16, 1982

I N S T I T U T E FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, V i rg in ia 23665

Operated by the
7 1

U N I V E R S I T I E S SPACE GsRA RESEARCH A S S U C I A T I O N

(N A S A - C Q - 1 8 5 8 0 9) LANGUAGE CONCEPTS FOR ~ a 9 - 71 343
DTSTRIBUTEO PROCESSING OF LARGE ARRAYS
(I C A S E) 2 7 p

uncl as
00/61 0 2 2 4 3 6 2

LANGUAGE CONCEPTS FOR DISTRIBUTED PROCESSING

OF LARGE ARRAYS

Piyush Mehrotra
Universi ty of V i r g i n i a

and

Terrence W. P r a t t
Universi ty of V i r g i n i a

Ab s t r ac t

A l a r g e a r r a y is an array whose s t o r a g e is d i s t r i b u t e d among primary and

secondary s t o r a g e and whose processing may be d i s t r i b u t e d among s e v e r a l t a s k s

i n a d i s t r i b u t e d system. This paper p r e s e n t s a semantic model (set of lan-

guage concepts) f o r represent ing large a r r a y s i n a d i s t r i b u t e d system i n such

a way t h a t t h e performance reali t ies inhe ren t i n t h e d i s t r i b u t e d s to rage and

process ing can be adequately represented. An implementation of t he l a r g e ar-

ray concept as an ADA package (abs t r ac t d a t a type) is descr ibed, as w e l l as a

p a r t i c u l a r t a i l o r i n g of t h e concept f o r the NASA F i n i t e E l e m e n t Machine. An

example a p p l i c a t i o n program using the package is also descr ibed.

T h i s work supported i n p a r t by NSF Grant MCS78-00763 and NASA Contract
NAS1-46. P a r t i a l support w a s a l s o obta ined under NASA Contract Nos. NAS1-
14472 and NAS1-16394 while the authors were i n r e s idence a t the I n s t i t u t e f o r
Computer Appl ica t ions i n Science and Engineer ing (ICASE), NASA Langley
Research Center , Eampton, Vi rg in ia .

1. In t roduc t ion

D i s t r i b u t e d processing of la rge d a t a s t r u c t u r e s i s an important problem

t h a t has received r e l a t i v e l y l i t t l e a t t e n t i o n a t t h e l e v e l of programming lan-

guage design. This paper p re sen t s a set of language concepts , t h a t is, a se-

mantic model, t o support the processing of l a r g e a r r a y s on a v a r i e t y of d i s -

t r i b u t e d and p a r a l l e l computer a rch i t ec tu re s . The semantic model is intended

t o p re sen t a u n i f i e d view t o the user of l a r g e a r r a y s , so t h a t t he u s e r may

s t r u c t u r e h i s program as an a r r a y processing program, without r a d i c a l d i s t o r -

t i o n of t h e underlying algorithm. However, t he a r r a y s i n ques t ion are under-

s tood t o be p a r t i t i o n e d and d i s t r i b u t e d among processor memories and secondary

s t o r a g e i n a d i s t r i b u t e d a rch i t ec tu re . This means t h a t the use r view cannot

simply be t h e t r a d i t i o n a l language view of a r r a y s , because t h e r e are perfor-

mance realities as soc ia t ed wi th the d i s t r i b u t i o n and movement of po r t ions of

t h e a r r a y during d i s t r i b u t e d processing t h a t should not be masked from t h e

user . As Jones and Schwarz [4] note i n t h e i r s tudy of use of t he CM , perfor -

mance reali t ies i n a d i s t r i b u t e d computation cannot r e a l i s t i c a l l y be masked

e n t i r e l y from t h e use r without a major degrada t ion i n performance of a d i s t r i -

buted system. This paper p re sen t s the semantic model, descr ibed i n i t i a l l y as

an ADA package de f in ing an a b s t r a c t d a t a type " la rge array". An implementa-

t i o n des ign f o r an MZMD d i s t r i b u t e d computer, t h e NASA F i n i t e Element Machine

[5] , is descr ibed and an app l i ca t ion f o r t h i s machine i s sketched.

*

2. Background

Most la rge s c i e n t i f i c computations involve i n t e n s i v e processing of l a r g e

a r r ays . The p o t e n t i a l f o r computational speedup by d i s t r i b u t i n g a r r a y pro-

ces s ing i n var ious ways among mul t ip l e processors has been t h e d r iv ing f o r c e

behind t h e design of most vec to r and SIMD supercomputers such as the ILLIAC-

I V , t h e GRAY 1, t h e CDC CYBER 205, and the NASA Massively P a r a l l e l Processor

(MPP) (21. MIMD d i s t r i b u t e d systems provide an oppor tuni ty f o r tak ing advan-

t age of t h e pa ra l l e l i sm inherent i n these computations i n d i f f e r e n t ways. The

NASA F i n i t e Element Machine (FEM) (51, a 36 processor d i s t r i b u t e d system, and

t h e CMU CM* represent two r a d i c a l l y d i f f e r e n t MIMD a r c h i t e c t u r e s t h a t might

p o t e n t i a l l y be used i n such app l i ca t ions .

Language s t r u c t u r e s proposed f o r a r r a y process ing on paral le l computers

have pr imar i ly concent ra ted on ex tens ion of ord inary language a r r a y s t o in-

c lude s p e c i f i c a t i o n of p a r a l l e l i s m i n c e r t a i n d i r e c t i o n s , such as is done i n

P e r r o t t ' s ACTUS 191 . Language proposa ls f o r d i s t r i b u t e d computation, such as

CSP (31, ARGUS [61, and ADA have not t r e a t e d the problem of l a r g e da t a s t ruc -

t u r e processing (beyond cons idera t ion of o rd ina ry f i l e process ing) .

There a re two coupled problems i n the d i s t r i b u t e d processing of l a r g e

da t a s t r u c t u r e s such as a r r a y s f o r which we seek an e f f e c t i v e language treat-

men t :

1. The p a r t i t i o n i n g of an a r r a y and i ts d i s t r i b u t e d p rocess ing on t h e

s e p a r a t e processors of an MIMD system. W e seek a s o l u t i o n t h a t a l lows l a r g e

scale concurrent processing of shared d a t a s t r u c t u r e s without a major overhead

i n t a s k communication o r unnecessary mutual exc lus ion as t a s k s t r a v e r s e t h e

d a t a s t r u c t u r e s . Guardians l61 and monitors, f o r example, provide mutual ex-

c lus ion b u t sharply l i m i t t h e concurrency a v a i l a b l e , while semaphores, c r i t i -

c a l reg ions , and rendezvous al low more concurrency but only with a l a r g e com-

munication overhead.

-2-

2. The p a r t i t i o n i n g of an array and its d i s t r i b u t e d s t o r a g e i n both sec-

ondary s t o r a g e and processor memories i n an MIMD system. To process a l a r g e

d a t a s t r u c t u r e such as an a r r a y usual ly r e q u i r e s a complex series of da t a par-

t i t i o n i n g s and da ta movements through a d i s t r l b u t e d system. It is t h i s prob-

l e m t h a t p re sen t s a major d i f f i c u l t y even f o r u s e r s of convent ional vec to r and

SIMD a r r a y computers. For example, P e r r o t t and Stevenson [lo] r epor t t h a t

u s e r s of t h e ILLIAC-IV found da ta p a r t i t i o n i n g and d a t a movement t o be t h e

most d i f f i c u l t a spec t of programming f o r t h a t machine. For d i s t r i b u t e d s t o r -

age, w e seek a s o l u t i o n t h a t f r e e s the user from t h e t a s k of managing d i r e c t l y

t h e complexi t ies of s t o r a g e and data movement inhe ren t i n t h e use of a d i s t r i -

buted system, without masking the c r i t i c a l performance reali t ies involved.

The r o o t s of our approach are found more d i r e c t l y i n t r a d i t i o n a l language

s t r u c t u r e s f o r s e q u e n t i a l f i l e process ing than i n those f o r a r r a y

processing. Consider t h e PASCAL view of f i l e s . A f i l e is a l a r g e l i n e a r d a t a

s t r u c t u r e i n PASCAL. It might e a s i l y be considered as a one-dimensional a r r a y

r a t h e r than as a s e p a r a t e d a t a type (f o r economy of language concept) , b u t

Wirth avoided t h i s temptat ion i n the PASCAL des ign , as most o t h e r language de-

s i g n e r s have done. The f a c t t h a t PASCAL a r r a y s are of i n v a r i a n t s i z e wh i l e

f i l e s may be extended a t one end is t h e least important d i f f e r e n c e between

f i l e s and vec to r s (APL, f o r example, a l lows new elements t o be concatenated t o

a vec to r) . Ignoring t h i s d i f fe rence , t h e r e appear t o be t h r e e = in d i s t i n c -

t i o n s between f i l e s and vec tors . Each is a l i n e a r sequence of components of

a r b i t r a r y type i n PASCAL, but (1) a f i l e is a large d a t a s t r u c t u r e presumed t o

be d i s t r i b u t e d between secondary and c e n t r a l memory, while a vec to r is resi-

dent e n t i r e l y i n c e n t r a l memory, (2) process ing of a f i l e at random p o i n t s is

no t p o s s i b l e , due t o the d i s t r i b u t e d na tu re of i ts s to rage , bu t i n s t ead is

r e s t r i c t e d t o a window which makes only p a r t of t h e f i l e v i s i b l e a t one t i m e ,

-3-

and (3) a f i l e has a l i f e t i m e t h a t i s p o t e n t i a l l y longer than t h a t of the pro-

gram processing i t , s o t h a t i t s s t r u c t u r e is def ined independent ly of t he pro-

gram processing it .

The language concept of f i l e processing is s t r a igh t fo rward . A program

wishing t o process a f i l e is given a window (one component wide i n PASCAL) on

t h e f i l e . Processing is only poss ib l e wi th in t h e window, bu t t he window may

be moved i n c e r t a i n r egu la r p a t t e r n s on t h e f i l e . To process an e n t i r e f i l e ,

a program pos i t i ons its window a t one end, and then a l t e r n a t e s processing and

window moving s t eps u n t i l t h e e n t i r e f i l e has been t r ave r sed . An end-of-f i le

func t ion allows t h e end of t he f i l e t o be de tec ted . To extend the f i l e , t he

window is pos i t ioned j u s t p a s t t he end of t he f i l e , and a new component is as-

signed *

Implementation of f i l e processing is a l s o an area where d i s t r i b u t e d pro-

cess ing concepts have been widely used on a l i m i t e d s c a l e . Typica l ly , two

processors cooperate, one execut ing t h e user program and the o the r managing

the bu f fe r ing of blocks of d a t a from secondary s t o r a g e i n t o b u f f e r s i n c e n t r a l

memory. From the re the f i r s t process moves t h e d a t a i n t o use r program vari-

ab le s (represent ing i t s process ing "window") f o r process ing as demanded by t h e

program. The u s e r is e f f e c t i v e l y pro tec ted from having t o manage these t rans-

f e r s h imsel f , bu t t h e language concepts of "window" and "moving the window"

ref lect more a b s t r a c t l y the performance real i t ies inhe ren t i n the implementa-

t i o n s t r u c t u r e .

-4-

3. Language Concepts f o r Large Array P rocess ing

I n many a p p l i c a t i o n s t h a t involve process ing of l a r g e a r r a y s , t h e a r r a y s

are s t o r e d and processed i n a manner more similar t o t h a t appropr i a t e f o r f i l e

process ing than f o r a r r ay processing i n t r a d i t i o n a l languages. That is, t h e

a r r a y s are l a r g e d a t a s t r u c t u r e s tha t must be s t o r e d a t least p a r t i a l l y on

secondary s t o r a g e , t h e i r l i f e t i m e is d i f f e r e n t from t h a t of t he programs pro-

ces s ing them, they are processed i n blocks t h a t e f f e c t i v e l y r ep resen t a pro-

ces s ing window on the a r r ay , and the p a t t e r n of process ing involves a r e g u l a r

(and o f t e n repea ted) traversal of the e n t i r e s t r u c t u r e by a l t e r n a t i n g s t e p s of

process ing and moving. W e wish t o provide a language semantic model t o sup-

p o r t t h i s view of a r r a y s and a r r ay processing, and extend it appropr i a t e ly f o r

a d i s t r i b u t e d computation on each array.

The semantic model is based on the fo l lowing concepts:

1. A large array is t o be seen by the programmer as a s i n g l e da t a s t ruc -

t u r e wi th t h e same l o g i c a l organiza t ion as an o rd ina ry a r r ay . For example, a

l a r g e ma t r ix (two-dimensional a r ray) is organized as a g r i d of rows and

columns i n the usua l way. This allows t h e use of a lgor i thms developed f o r ma-

t r i x process ing t o be used without r a d i c a l d i s t o r t i o n of t h e i r s t r u c t u r e .

2. A l a r g e a r r ay , however, is not o r d i n a r i l y v i s i b l e t o a s i n g l e t a sk as

a u n i t a t one t i m e . Ins tead a task sees only a p a r t of t h e a r r a y through a

r e c t a n g u l a r window. Only the p a r t of t h e a r r a y v i s i b l e i n t h e window may be

accessed and modified. Thus t h e window is t h e locus of processing f o r t h e

task.

3. A window may be posi t ioned on an a r r a y by a t a s k and subsequent ly

moved as needed. Thus t o process an e n t i r e a r r a y , a window is c rea t ed and

pos i t i oned on the a r ray . The data v i s i b l e i n t h e window is processed, and

then t h e window is moved t o a neighboring pos i t i on . Processing and moving

-5-

a l t e r n a t e u n t i l t h e a r r a y is completely t r ave r sed . A r e g u l a r movement p a t t e r n

may be expressed i n a t a s k us ing an ex tens ion of a FOR loop (a CLU type i t e r -

a t o r mechanism [7] is appropr i a t e) . A l t e r n a t i v e l y , t h e MOVE opera t ion may be

d i r e c t l y invoked as requi red .

4 . A t a s k may subdiv ide i ts window i n t o smaller p a r t s c a l l e d subwindows.

Subwindows may be passed as parameters t o sub ta sks f o r concurrent process ing .

The sub ta sks may synchronize and communicate i n t h e usua l ways t o exchange in-

formation during process ing (e.g., t o r eques t va lues from a neighboring sub-

window). However, subwindows cannot be moved independently; on ly the e n t i r e

window may be moved. Thus t h e p rocess ing proceeds i n phases. The window is

moved by t h e main task. The subtasks are invoked t o process the d a t a wi th in

t h e i r subwindows. When a l l t he subtasks have te rmina ted , t he main t a s k may

aga in move the window. P a r t i t i o n i n g of a window i n t o subwindows is done sta-

t i c a l l y as par t of the window d e f i n i t i o n r a t h e r than dynamically.

5 . Windows and subwindows inay be c rea t ed with t h r e e d i f f e r e n t types of

access p r i v i l e g e s : Read-only, write-only, and read-write. Overlap of

read-only subwindows is aliowed, but write-only and read-write subwindows must

be d i s j o i n t .

6 . Operations are provided t o allow a t a s k t o d e t e c t t h e "borders" of an

a r r a y (analogous t o the usua l end-of-f i l e test).

7. A t a sk may have s e v e r a l windows on d i f f e r e n t a r r a y s , and these may be

moved asynchronously as needed.

8 . Several t a s k s may have windows concur ren t ly on the same a r r a y , bu t

write-only and read-write windows are not allowed t o overlap. -
This conceptual model €or l a r g e a r r a y p rocess i ag allows the language

s t r u c t u r e t o r e f l e c t t he performance real i t ies of d i s t r i b u t e d s t o r a g e and pro-

ces s ing without unduly burdening t h e use r with implementation d e t a i l s . I%us

t h e use r may be made aware t h a t a MOVE is c o s t l y and i n h i b i t s concurrent pro-

ces s ing (s i n c e a l l subtasks must te rmina te) wi thout l o s i n g t h e conceptua l

u n i t y of viewing the da t a s t r u c t u r e as an a r r a y (r a t h e r than as s e p a r a t e

blocks d i s t r i b u t e d between secondary and primary s t o r a g e) .

4. "Large Array" as an Abstract Data Type

The class of l a r g e a r r a y s is appropr i a t e ly considered as a new a b s t r a c t

d a t a type. As such it might be included as an ex tens ion t o an e x i s t i n g lan-

guage o r as p a r t of a new language f o r d i s t r i b u t e d computing. To ga in some

exper ience wi th use and implementation of t he semantic model o u t l i n e d above,

w e have chosen t o de f ine the model as an a b s t r a c t type wi th in ADA, us ing t h e

gene r i c package f a c i l i t y . The ADA t a sk ing f a c i l i t y provides a " v i r t u a l

computertt t h a t may be considered as an a b s t r a c t d i s t r i b u t e d machine. Within

t h i s abstract machine, the LARGE-ARRAY package d e f i n e s a d e t a i l e d implementa-

t i o n of t h e l a r g e a r r ay model described above, and a l s o provides a syntax (not

e n t i r e l y i d e a l) f o r c r e a t i n g and operat ing on l a r g e a r r a y s .

An important aspec t of the LARGEARRAY a b s t r a c t type is t h a t i t subsumes

t h e b a s i c model f o r ord inary sequent ia l f i l e process ing (exc lus ive of s p e c i a l

f e a t u r e s f o r t ex t f i l e s) . Thus a one-dimensional l a r g e array (vec to r) repre-

s e n t s a genera l ized form of s equen t i a l f i l e , i n which t h e window may be l a r g e r

than a s i n g l e element. I f two tasks each have a window simultaneously on a

s i n g l e l a r g e vec to r , such t h a t one is gene ra t ing new elements while t h e o t h e r

is process ing e x i s t i n g elements, the model become8 t h a t of the UNIX pipe ,

which is a l s o an ex tens ion of t h e usual s e q u e n t i a l f i l e processing concept t o

a (more r e s t r i c t e d) d i s t r i b u t e d system.

-7-

The publ ic s p e c i f i c a t i o n p a r t of t he ADA gene r i c package is given i n

Space does not p e r m i t t h e complete d e f i n i t i o n t o be given, so i t s Appendix A.

b a s i c i n t e r n a l s t r u c t u r e is descr ibed informal ly here .

Crea t ing l a r g e a r r ays

As can be seen from the package d e f i n i t i o n , one o r awre l a r g e a r r a y s con-

t a i n i n g elements of t he same type can be supported by one i n s t a n t i a t i o n of t h e

gene r i c package via the type LARGE-ARFUY. P r e e x i s t i n g a r r a y s i n e x t e r n a l

f i l e s can b e accessed by a t t a c h i n g one of t hese l a r g e a r r a y s v i a the procedure

OPEN, whi le new a r r a y s can be c rea t ed using the procedure CREATE. The row and

column bounds of a l a r g e a r r a y are s p e c i f i e d a t t h e t i m e of a s s o c i a t i n g t h e

Large a r r a y with an e x t e r n a l f i l e and remain f i x e d during the ex i s t ence of the

a r ray . Procedure CLOSE can be used t o sever t h e a s s o c i a t i o n of an i n t e r n a l

l a r g e a r r a y with i t s a s soc ia t ed e x t e r n a l f i l e . Procedure DELETE d e l e t e s t he

a s soc ia t ed ex te rna l f i l e .

The package i n t e r n a l l y views a l a r g e a r r a y as a sequence of blocks, each

block be ing defined as a subarray of t h e l a r g e a r r a y as shown i n Fig. 1. The

block i s used as a u n i t f o r t r a n s f e r of da t a between secondary s to rage and

primary memory(s). Thus the block s i z e is implementation dependent and de te r -

mined by t h e optimum s i z e f o r 1/0 d a t a t r a n s f e r .

The row and column bounds are used t o determine the t o t a l number of

blocks needed f o r the l a r g e a r ray . I n our ADA implementation, f o r each of t he

blocks c o n s t i t u t i n g the l a r g e a r r a y a monitor- l ike t a s k of type BLOCK

CONTROLLER is i n i t i a t e d t o c o n t r o l access t o t h e block. The reading and w r i -

t i n g of t h e block t o secondary s t o r a g e is performed by the a s soc ia t ed t a s k as

and when required These BLOCK-CONTROLLER t a s k s are d iscussed f u r t h e r below

i n conjunct ion with the implementation of window movement.

-8-

Windows

Windows are s t a t i c a l l y a t tached t o a p a r t i c u l a r l a r g e a r r a y us ing t h e

procedure CREATE. The same procedure i s a l s o used t o s p e c i f y t h e s i z e of t h e

window and i t s p r i v i l e g e s , i -e . , whether i t is read-only (R), write-only (W) ,

o r read-write (RW). The row and column increments t o be used f o r r e l a t i v e

movement of t he window are a l s o passed as parameters t o the procedure. The

u s e r can s p e c i f y an edge element tha t will be used t o f i l l ou t t h e p o r t i o n of

t h e window t h a t does no t l i e wi th in the bounds of t h e a s s o c i a t e d l a r g e a r r a y

when t h e window is moved p a s t t h e edge of t h e a r r a y .

A window is viewed by t h e user as an a r r a y of s p e c i f i e d s i z e along wi th

information which is p r i v a t e t o t h e package. Thus t h e process ing of t h e ele-

ments of t h e l a r g e a r r a y v i s i b l e through t h e window is performed i n a manner

analogous t o

Each numbered

1 3
I
I --+.----

I

I

9 l a UT-
I I
I I I

I
I

l a r g e array

-----indicates block boundary

block has an assoc ia ted BLOCK-CONTROLLER task .

indicate8 wlndov boundary

Fig. 1. Large a r r a y with four windows, showing t h e d i v i s i o n
i n t o blocks i n the ADA implementation.

-9-

t h e processing of an ord inary small a r r ay . That is, t h e access ing of window

elements is done through subsc r ip t ing r e l a t i v e t o t h e o r i g i n of t he window

r a t h e r than t h e o r i g i n of t he l a r g e a r r ay .

Moving a window

Two methods of window movement are provided: r e l a t i v e and absolute . The

MOVE procedure uses t h e row and column increments (def ined when c r e a t i n g t h e

window) t o move t h e window t o a new p o s i t i o n r e l a t i v e t o the p re sen t

pos i t i on . The SET procedure, on t h e o the r hand, moves the window t o the ind i -

ca t ed absolu te p o s i t i o n on the a r ray . Thus SET can be used t o e s t a b l i s h t h e

i n i t i a l pos i t i on of t h e window on the a r r ay .

Whenever a window is moved, a copy of t h e elements v i s i b l e through the

window i s provided. When the window is moved aga in , t h e va lues of t h e

elements are wr i t t en back on the a r r ay be fo re the move is executed. Thus each

process works on a p r i v a t e copy of t he elements v i s i b l e through the window,

and the a c t u a l a r r a y is o r d i n a r i l y updated only when the window is moved

away. Procedures READ and WRITE are a v a i l a b l e to update the window o r the as-

s o c i a t e d l a rge array r e spec t ive ly without a c t u a l l y moving the window.

Depending upon t h e s i z e of the window and t h e p o s i t i o n of t he window

w i t h i n the la rge a r r ay , t he window may p a r t i a l l y o r f u l l y cover one or more

blocks of t h e a r ray , as shown i n Pig. 1. I n t e r n a l l y f o r each window a list of

blocks covered by t h e window is maintained. The procedure READ s e q u e n t i a l l y

makes an en t ry c a l l t o each of the BLOCK-CONTROLLW tasks as soc ia t ed with t h e

blocks i n t h i s l ist i n o rde r t o update t h e a p p r o p r i a t e po r t ion of t h e

window. S imi la r ly , WRITE makes an e n t r y c a l l t o t h e t a s k s f o r updating t h e

appropr i a t e port ion of t he blocks.

-10-

When a window i s t o be moved to a new p o s i t i o n s e v e r a l s t e p s need t o be

performed. F i r s t t he elements a t the p re sen t p o s i t i o n are updated (f o r w r i t e -

only and read-write windows) with c a l l s t o the t a s k s c o n t r o l l i n g the blocks

covered by the window. Then en t ry c a l l s are made t o t h e s e t a s k s t o detach t h e

window from the blocks.

Next the blocks t h a t would be covered by t h e window i n the new p o s i t i o n

are determined. Entry c a l l s are made t o the t a s k s c o n t r o l l i n g these b locks t o

a t t a c h t h e window t o the blocks. Each t a s k determines i f t h e window can over-

l a y i t s block without causing an incompatible over lap wi th a window a l r eady

s t a t i o n e d on t h e b lock (s ince write-only and read-write windows cannot

over lap) . I f such a overlap would occur , t h e window t o be moved is delayed

u n t i l t h e o the r window has moved off t h e pos i t i on . Otherwise t h e

BLOCK-CONTROLLER t a s k a t t a c h e s the window t o t h e block. Once a t t a c h e n t r y

ca l l s f o r a l l t h e blocks covered by the window have been s u c c e s s f u l l y

completed, t h e elements a t the new p o s i t i o n are read i n t o t h e window (l o c a l

a r r a y) , thus completing the operat ion of moving a window.

Block c o n t r o l l e r t a s k s

Each of t h e BLOCK - CONTROLLER t asks c o n t r o l l i n g a b lock of t h e a r r a y main-

t a i n s a l ist of t h e windows a t tached t o t h e block. Since a window may be only

cover ing a p a r t of t he block, information about t h e p o r t i o n of t he block

covered by t h e window and about the corresponding p a r t of t h e window which

over lays the block, is a l s o maintained by the t a s k f o r each of the windows at-

tached t o i t . Thus when a t a sk accepts a READ o r WRITE ca l l f o r a p a r t f c u l a r

window, i t can determine the appropriate po r t ions of t he window and the block

t h a t are t o be used f o r t h e purpose of reading o r wr i t i ng .

-1 1-

A t a sk con t ro l l i ng a block of the l a r g e a r r a y has four en t ry p o i n t s (a)

a t t a c h a window, (b) detach a window, (c) read and (d) w r i t e . For an a t t a c h

e n t r y c a l l , t h e task checks f o r incompatible over lap with windows a l r eady on

i ts window l i s t . I f no overlap can occur o r i f one of t h e overlapping windows

is a read-only window then the window is a t t ached t o the window-list a long

with t h e re levant da t a regarding t h e po r t ion of t h e block being overlayed by

t h e window and the p a r t of the window covering the block. Whenever a window

is a t t ached t o an empty window-list, t he t a s k c o n t r o l l i n g t h e block reads t h e

b lock i n from secondary s to rage . Thus t h e block is r e s i d e n t i n memory only

while a window is covering i t .

For a detach e n t r y c a l l , t h e p a r t i c u l a r window is detached from the win-

dow-list. I f t h i s causes t h e window-list t o become empty t h e block is w r i t t e n

back onto secondary s torage . The t r a n s f e r t o secondary s t o r a g e is performed

only i f t h e block has been modified whi le i t w a s r e s i d e n t i n memory. I n

e i t h e r case , the memory requi red f o r the b lock is then re leased .

For a read en t ry c a l l , t h e appropr i a t e po r t ion of t h e block is copied

i n t o the window. S imi l a r ly f o r a write e n t r y cal l , t h e copying is done from

the window i n t o t h e block.

Mutual exclusion and deadlock

The use of an independent t a sk c o n t r o l l i n g access t o each block of a

l a r g e a r r a y in t h e ADA fmplementation provides mutual exc lus ion of e x t e r n a l

t a s k s wishing to access t h e block in order t o move t h e i r windows. Once a copy

of t h e re levant po r t ion of t h e block has been made i n t o a window, independent

e x t e r n a l tasks can process t h e i r windows concurren t ly . The use of t a s k s f o r

c o n t r o l l i n g the blocks thus provides a moni tor - l ike mutual exc lus ion , bu t i t

does not sharply l i m i t the poss ib l e concurrency a v a i l a b l e f o r processing of

-12-

t h e a r r ays . Note t h a t d i r e c t access t o BLOCK CONTROLLER t a s k s is not ava i l -

a b l e t o t h e use r because these tasks are hidden wi th in the LARGE-4RRAY pack-

age.

-

Deadlock when s e v e r a l windows are moving asynchronously on the same a r r a y

is avoided by a simple resource order ing s t r a t e g y . Blocks are numbered se-

q u e n t i a l l y and become the "resources" t h a t must be requested i n a f ixed

sequence. A MOVE o r SET opera t ion must proceed by f i r s t detaching the window

from each block i t covers and then a t t a c h i n g the window t o the blocks i n i ts

new p o s i t i o n i n t h e o rde r of the block numbers. No reading o r wr i t i ng of por-

t i o n s of a window may occur u n t i l t he window has been success fu l ly a t t ached t o

a l l t h e blocks i t covers.

Subwindows

Subwindows can be s t a t i c a l l y overlayed on a window v i a the procedure

CREATE provided f o r t h i s purpose. The window with which the subwindow is t o

be a s soc ia t ed , i t s p o s i t i o n wi th in the window and i ts p r i v i l e g e s are passed as

parameters. The p r i v i l e g e s of a subwindow have t o be compatible with those of

t h e a s s o c i a t e d window (e.g., a write-only window cannot have a read-only

subwindow). Also t he subwindow conf igura t ion over lay ing a window should not

cause an incompatible overlap between subwindows wi th d i f f e r e n t p r i v i l e g e s .

Procedure ASSIGN is used t o ass ign a va lue t o a p a r t i c u l a r element of a

subwindow. Function GET r e t u r n s the va lue of a s p e c i f i e d element. These two

subprograms work d i r e c t l y on the window t o which the subwindow is a t t ached

(r a t h e r than on a copy). Note that t h e r e are no procedures f o r moving sub-

windows; on ly t h e window on which the subwindow is overlayed can be moved. A

move au tomat i ca l ly updates the elements i n the subwindow.

-13-

A funct ion EOS has been provided f o r both a window and a subwindow t o de-

termine i f the window o r subwindow is s t r a d d l i n g t h e edge of t h e l a r g e a r r a y

s t r u c t u r e . This func t ion r e t u r n s an i n t e g e r s i g n i f y i n g the p a r t i c u l a r edge o r

corner t h a t has been reached, o r zero if the window o r subwindow is e n t i r e l y

wi th in the boundaries of the a r r ay . Various o t h e r func t ions are provided t o

determine the p r o p e r t i e s of l a r g e a r r a y s , windows, and subwindows.

The semantics of t h e l a r g e a r r a y model has been descr ibed above i n terms

of t h e LARGE-IRRAY package. A more complete d e s c r i p t i o n may be found i n

181. The package has been implemented on the VAX 11/780 a t the Univers i ty of

V i rg in i a using the UNIX implementation of t he NW ADA/ED t r a n s l a t o r and i n t e r -

p r e t e r .

5 . Implementation on the F i n i t e Element Machine

Implementation s t r a t e g i e s f o r l a r g e a r r a y process ing are another aspect

of t h i s p ro jec t . Rather than f i x e n t i r e l y the semantic d e t a i l s of t he gene ra l

l a r g e a r r a y model and then search f o r an e f f e c t i v e implementation s t r a t e g y on

d i f f e r e n t d i s t r i b u t e d a r c h i t e c t u r e s , we have chosen in s t ead t o explore d i f f e r -

e n t t a i l o r i n g s of the genera l semantic model t o f i t p a r t i c u l a r a r c h i t e c t u r e s .

The d i s t r i b u t e d system t o which we have immediate access is the NASA

F i n i t e Element Machine (FEM), c u r r e n t l y running i n a four processor ve r s ion a t

the NASA Langley Research Center, with a i6 processor ve r s ion expected t o be

complete by the end of 1982 and a 36 processor ve r s ion a v a i l a b l e sometime i n

1983. The PEM is an MIMD a r c h i t e c t u r e o r i g i n a l l y designed f o r f i n i t e element

c a l c u l a t i o n s in s t r u c t u r a l engineer ing- However the a r c h i t e c t u r e is gene ra l

purpose except f o r minor d e t a i l s . A T I 990 minicomputer s e rves as a cont ro l -

ler and i n t e r f a c e with secondary s t o r a g e and the e x t e r n a l environment. Each

-14-

of t h e 36 FEM processors is a standard T I 9900 microcomputer with s e p a r a t e

l o c a l memory. There is no shared memory. The processors are arranged i n t h e

form of a square a r r a y , and each can communicate d i r e c t l y with i ts e i g h t near-

est neighbors o r over a g loba l bus t o any o t h e r processor o r t h e c o n t r o l l e r .

The l o c a l communication l i n e s f o r the processors on the " l o g i c a l edge" of t h e

a r r a y wrap around. A separate network composed of a set of boolean " s i g n a l

f l ags" is provided f o r synchronizat ion of t he processors .

Curren t ly f o r t h e programmer on t h e FEM (us ing Pasca l) , i f a l a r g e a r r a y

i s t o be processed, t he programmer must p a r t i t i o n the a r r a y , s t o r e i t on se-

condary s to rage i n b locks , and e x p l i c i t l y code t h e t r a n s f e r s of t h e b locks

through the c o n t r o l l e r t o the ind iv idua l processors as needed. Adams and

Ortega [l] desc r ibe a t y p i c a l f i n i t e element c a l c u l a t i o n of t h i s s o r t .

The implementation design f o r the l a r g e a r r a y model on the FEM is orga-

nized as follows. A l a r g e a r r a y is s t o r e d on a secondary s to rage device i n

b locks or pages. The c o n t r o l l e r memory is used as a "staging buf fer" (some-

what l i k e a b u f f e r i n ord inary f i l e 1/01. The c o n t r o l l e r handles a l l r e q u e s t s

f o r movement of windows. Thus a l l t he d a t a s t r u c t u r e s needed t o implement

windows and subwindows are maintained by the c o n t r o l l e r i t s e l f .

The c o n t r o l l e r receives requests for c r e a t i n g and opening l a r g e a r r a y s

and a s s o c i a t e s l a r g e a r r a y s with ex te rna l f i l e s . The c r e a t i o n of window8 and

subwindows is a l s o performed by t h e c o n t r o l l e r . Each t i m e a t a sk executes t h e

procedure CREATE for d e f i n i n g a window or a subwindow, the c o n t r o l l e r is

s igna led and t h e r e l evan t da t a is sent t o it. Along with the da t a p e r t a i n i n g

t o t h e size, p o s i t i o n , etc., of t h e windows and subwindows, t h e c o n t r o l l e r al-

so s t o r e s information about t he task o r subtask (and the processor) wi th which

each is assoc ia ted .

-15-

When a task r eques t s t h a t a window be pos i t i oned a t a p a r t i c u l a r p l ace on

t h e l a r g e a r ray using t h e SET procedure, t h e r eques t i s s e n t t o t h e

c o n t r o l l e r , which b r ings the r e l evan t pages from secondary s to rage i n t o i t s

l o c a l memory, and then t r a n s f e r s t he d a t a t o t h e processor memories. When a

t a s k reques ts t h a t i ts window be moved (by a c a l l t o the MOVE procedure) , t h e

reques t is sent t o t h e c o n t r o l l e r , which uploads t h e r e l e v a n t blocks from t h e

FEM processors , modif ies t h e pages i n i ts "s tag ing buffer" , w r i t e s these pages

ou t t o secondary s to rage , b r ings i n t h e new pages r equ i r ed , and re loads t h e

processor memories with the new da ta . This is the process t h a t now must be

done manually by t h e programmer. S imi l a r ly a READ o r WRITE reques t f o r a win-

dow r e s u l t s i n downloading o r uploading of da t a t o the processor memories by

t h e c o n t r o l l e r . Note t h a t i n the FEM implementation t h e r e is no need f o r t h e

BLOCK-CONTROLLER t a s k s used i n the ADA implementation s i n c e a l l reques ts f o r

block access a re handled s e q u e n t i a l l y by a s i n g l e t a s k i n the c o n t r o l l e r .

Each subwindow is as soc ia t ed wi th a sub ta sk on one of t he FEM

processors . When subwindows are overlayed on a window, s to rage f o r each of

t h e subwindows of the window is a l l o c a t e d wi th in each subtask. When the main

t a s k pos i t i ons t h e window on t he l a r g e a r r a y , t h e d a t a i s downloaded on t h e

g l o b a l bus to the subwindow area wi th in each subtask . The subtasks can syn-

chronize themselves using t h e hardware supported f l a g network a f t e r process ing

of t he d a t a within the subwindows has been completed. A t t h i s po in t , t he main

t a s k can again move the window (which r e s u l t s in uploading the subwindow d a t a

t o the s tag ing b u f f e r i n the c o n t r o l l e r and the downloading of new da ta t o the

subwindow areas i n t h e processors) . The sub ta sks can then be r e s t a r t e d t o

process the new subwindow da ta .

I n the general semantic model f o r l a r g e a r r a y s , overlapping subwindows

may be used t o a l low one subtask t o access d a t a t h a t is being processed by

-16-

another subtask. Implementation of this structure without shared memory on

the FEM is difficult. On the FEM subtasks resident on different processors

instead may communicate directly using the local and global communication

links. Overlapping subwindows are then unnecessary and may be prohibited.

The main task that "owns" a window and controls its movement may be resi-

dent either on the controller or on one of the processors. It may have a sub-

window itself where it processes the array, or it may only serve as a

synchronizer to monitor the activity of the subtasks and move the window when

each processing step has been completed.

To match the hardware realities of the FEM, we have made several restric-

tions on the general large array model:

a. A window must be either completely partitioned into non-overlapping

subwindows or it must be entirely without subwindows.

b. Subwindows are associated with subtasks statically (at the time of

their creation) rather than being passed as parameters to the subtasks.

6 . Example

The Finite Element Machine has been designed to solve finite element pro-

blems in structural analysis. One of the major phases in the finite element

method of analyzing structures is the solution of a system of simultaneous

equations of the form:

A x = b

In this section, an algorithm for solving such a system of equations,

where the matrix A is an n by n upper triangular matrix, is sketched. The al-

gorithm essentially uses a direct back solve method for solving the equations

for a set of right hand side vectors b. The algorithm has been coded in ADA

-1 7-

us ing the LARGE-ARRAY package (see Appendix B) , but assuming the r e s t r i c t i o n s

of t h e FEM implementation r a t h e r than t h e gene ra l ADA implementation. A

ske tch of the a lgor i thm of Appendix B is given he re ; see [81 f o r t h i s and

o t h e r complete a lgori thms.

For t h e purposes of t h i s a lgor i thm the FEM would be configured as a

l i n e a r sequence of n processors , each communicating only with i ts l e f t and

r i g h t neighbors. The wrap around f e a t u r e of t h e FEM would be used t o connect

processors on t h e edge. For t h e purposes of coding the algori thm, ADA t a s k

e n t r y ca l l s have been used t o s imula te the FEM l o c a l neighbor connections.

Each of the f irst n-1 processors would have a subtask of type BACK-SOLVE

r e s i d e n t upon it . The subtask MAIN-BACK-SOLVE would be r e s i d e n t on t he n t h

processor (see App. B). The a lgor i thm is set up s o t h a t each of t h e proces-

s o r s views one column of t he a r r a y A and performs p a r t i a l c a l c u l a t i o n s on t he

s o l u t i o n vector X. Thus t h e subtask MAIN-BACK-SOLVE "receives" t h e r i g h t hand

s i d e vec to r b and c a l c u l a t e s t he n th element of x, c a l c u l a t e s t he con t r ibu t ion

of t h e n t h column of t he a r r a y A and passes on t h e p a r t i a l l y ca l cu la t ed x vec-

t o r t o its l e f t neighbor. The k t h subtask BACK-SOLVE r ece ives the p a r t i a l l y

c a l c u l a t e d x vector from i ts r i g h t neighbor, c a l c u l a t e s t h e k t h element of t h e

x vec to r , and updates t h e rest of the x vec to r .

The procedure MAIN r e s i d e n t on t h e c o n t r o l l e r d e c l a r e s A, X, and B as

LARGE-ARRAY'S and OPEN'S A and B, a s s o c i a t i n g them wi th a l r eady e x i s t i n g ex-

t e r n a l f i l e s . A new f i l e is c rea t ed and a s s o c i a t e d wi th t h e l a r g e a r r ay X. A

read-only window, A-window, is a l s o def ined by MAIN and a s soc ia t ed wi th the

l a r g e a r r a y A. A-window is defined t o he as l a r g e as t h e e n t i r e a r r a y A and

is pos i t ioned so as t o cover the whole a r r ay .

Each of the BACK-SOLVE subtasks d e c l a r e s a subwindow, A-sw, of t he window

A - window and pos i t i ons i t such t h a t t he subwindow f o r subtask k is a t the k t h

-1 8-

column of the window. Also a one element window is dec lared by each subtask

on t h e l a r g e a r r a y X and is i n i t i a l l y pos i t i oned on t h e f i r s t column of t h e

k t h row of X.

The subtask MAIN-BACK-SOLVE, in a d d i t i o n t o the A-sw subwindow and the X

window, a l s o has a window, B-window, on t h e l a r g e a r r a y B. This window is

i n i t i a l l y pos i t i oned a t the f i r s t column of t h e a r r a y B. Afte r processing

t h i s f i r s t column of t h e B-window, t h e subtask c a l c u l a t e s t h e n t h element of

t h e x v e c t o r , writes i t i n the X-window, pas ses i t s con t r ibu t ion t o its l e f t

neighbor (subtask n-1) and then moves t h e B-window and X-window one p o s i t i o n

t o t h e r i g h t on the r e spec t ive a r rays so as t o process the next b vec tor .

Process ing and movement a l t e r n a t e u n t i l t h e end of t h e l a r g e a r r a y B is

reached (EOS(B_window) is negat ive) , i n d i c a t i n g t h a t s o l u t i o n f o r a l l t h e

given r i g h t s i d e s (i n B) is complete.

The k t h subtask BACK-SOLVE rece ives k elements of t he p a r t i a l l y ca lcu la-

ted x va lues from i ts r i g h t neighbor. It gene ra t e s t h e k t h element of t h e x

vec to r i n X-window, communicates k-1 p a r t i a l l y c a l c u l a t e d x va lues t o i t s l e f t

neighbor, and then moves its X-window. This is repea ted u n t i l a l l r i g h t hand

s i d e s have been processed and all subtasks are a t t h e i r TERMINATE SELECT al-

t e r n a t i v e , a t which t i m e they a l l terminate a t once.

7. Conclusions

The l a r g e a r r a y model is intended t o provide a conceptual u n i t y a t a

high-level t o an area of d i s t r i b u t e d process ing t h a t is now t r e a t e d only wi th

r e l a t i v e l y low level pr imi t ives . The c e n t r a l concepts of window and subwindow

al low bo th t h e d i s t r i b u t e d s to rage and t h e d i s t r i b u t e d processing of a l a r g e

a r r a y t o b e represented i n an app l i ca t ions program i n a way t h a t is n a t u r a l

-1 9-

for array processing but which at the same time reflects the performance real-

ities involved.

Implementation of the large array package on different distributed sys-

tems would take on a different form in each case. We have chosen to first de-

fine a general semantic model and then to study the tailoring of the model

that is appropriate for different distributed architectures.

There is still a great deal to be learned about the representation and

implementation of large data structures and data structure processing on dis-

tributed systems. Within the confines of this particular model, several areas

of importance are:

a. Dynamic extension of arrays. It is natural to consider tasks as ex-

tending arrays in various ways during processing (continuing the analogy with

file processing in traditional languages) . Although we have touched on these
issues here to a limited extent, a more complete semantics and implementation

model for such dynamic extension is needed.

b. Dynamic windows. The windows discussed in this model are conceptually

static as far as their size and other parameters such as move increments are

concerned. The semantics and implementation for more dynamic windows need to

be explored.

C. Special types of arrays. The package supports only matrices in the

form given here. The extension to higher dimension arrays appears straight-

forward but needs to be explored, a8 w e l l as special types of arrays such as

symmetric, sparse, and banded matrices.

REFERENCES

[l] Adams, L. and Ortega, J., "A Multi-color SOR Method f o r P a r a l l e l Computa-

t i on , " Proc. 1982 I n t l . Conf. on P a r a l l e l Process ing , August 1982.

[2] Batcher , K. E., "Design of a Massively P a r a l l e l Processor," IEEE Trans.

Comput., C-29, No. 9, September 1980, pp. 836-840.

[3] Hoare, C. A. R., "Communicating Sequen t i a l Processes ," CACM, Vol. 21, No.

8, August 1978, ppe 666-6770

[4] Jones , A. and Schwarz, P., "Experience Using Mult iprocessor Systems - A

S t a t u s Report," ACM Comp. Surveys, Vol. 12, No. 3, June 1980, pp.

121-166

[5] Jordan, H. F., "A Spec ia l Purpose Arch i t ec tu re f o r F i n i t e Element

Analysis," Proc. 1978 I n t l . Conference on P a r a l l e l Processing, August

1980, pp. 263-266.

[61 Liskov, B. and S c h e i f l e r , R., "Guardians and Actions: L i n g u i s t i c Support

f o r Robust, D i s t r ibu ted Programs , I1 Ninth ACM POPL, Albuquerque, NM,

January 1982, pp. 7-19.

[71 Liskov, B O , e t al . , "Abstraction Mechanisms i n CLU," CACM, Vol. 20, No.

8, August 1977, pp. 564-5760

-21-

[81 Mehrotra, P. "Distributed processing of large arrays", Ph .D. t h e s i s ,

University of Virginia, 1982 (i n preparation).

[9] Perrott, R., 11 A Language for Array and Vector Processors," ACM TOPLAS,

Vol. 1, No. 2, October 1979, pp. 177-195.

[lo] Perrott, R. H. and Stevenson, D. K . , "Users' Experiences with the ILLIAC

I V Sys tem and its Programming Languages," SIGPLAN Notices, Vol. 16,

NO. 7, July 1981.

..

-22-

Appendix A. ADA Generic Package for Larne Arrays (specification part only).

generic

package LARGE-4RRAY'pKGE is
type ELEMENT is private;

type LARGEJRRAY is private;
type HATRIX is array(1NTEGER range <>, INTEGER range <>) of ELEMENT;
type WINDOW-INH) is private;
type WINDOW-DESC(row-size, col-size: NATURAL) is

record
win: MATRIX(l..rw_size, l..col-size);
inf 0: WINDOW-INFO;

end record;
type WINDOW is access WINDOW-DESC;
type SUBWINDOW is private;
type PRIVILEGES is (R,W,RW);

-- Procedures to create or open large arrays (attach internal names to external large arrays).
procedure CREATE(ar: in out LARGE-UY;

row-low-bd, row-high-bd, col-low-bd, col-high-bd: INTEGER;
name: in STRING);

row-low-bd, row-high-bd, col-low-bd, col-high-bd: INTEGER;
name: in STRING);

procedure OPEN(ar: in out LARGE-ARRAY;

- Procedures to delete or close large arrays.
procedure DELETE(ar: in out LARGE-ARRAY);
procedure CLOSE(ar: in out LARGE-ARRAY);

-- Procedures for creating windows and subwindows.
procedure CREATE(wind: in out WINDOW;

row-size, col-size: NATURAL;
inmode: PRIVILEGES;
row-inc, col-inc: INTEGER;
ar: LARGE-ARRAY;
edge: BOOLEAN;
edge-element: ELEMENT);

row-size, col-size, rowqos, colgos: NATURAL
inmode: PRIVILEGES;
wind: WINDOW) ;

procedure CREATE(subwin: in out SUBWINDOW;

- Procedures to move windows. - window is not read-only) and a read of the next position (if the window is not write-only). Note that a move implies a write of t le last window position (if the

procedure SET(wind: in out WINDOW; - absolute movement
procedure MOVE(wind: in out WINDOW); - relative movement new-row, new-col: INTEGER);

- Procedures to read and write windows without movement of the window.
procedure READ(wind: in out W I N D O W) ;
procedure WRITE(wind: in WINDOW) ;

-- Procedures to assign and get values of single elements of subwindows.
procedure ASSIGN(aubwin: in out SUBWINDOW;

row, col: NATURAL;
value: ELEMENT) ;

function GET(subwin: SUBWINDOW;
row, col: NATURAL) return ELEMENT;

- Functions to determine the end of structure.
function EOS(wind: in WINDOW) return INTEGER;
function EOS(aubwin: in SUBWINDOW) return INTEGER;

-- Various other functions are included in the package but not listed here that - return the various properties of large arrays, windows, and subwindows.
end LARGE-RRAY-PKGE;

-2 3-

Appendix B. ADA Program for Parallel Solution of a Set of Simultaneous Eauations.

with LARGE-ARRAY-PKGE;
procedure MAIN le

package FLOAT-4RRAY is new LARGE-ARRAY-PKGE(float);
use FLOAT-ARRAY;

n: constant NATURAL; - size of the A matrix
m: constant NATURAL; - number of right hand sides to be solved
task type BACK-SOLVE is

entry WHO-4M-I(self-id: NATURAL);
entry MORE;
entry NEXT(x: float);

end BACK-SOLVE;
task body BACK-SOLVE is separate;

task MAIN-BACK-SOLVE is
end MAIN-BACK-SOLVE;
task body MAIN-BACK-SOLVE is separate;

SOLVE: array (l..n-l) of BACK-SOLVE;
A,X,B: LARGE-4RRAY;
A-window: WINDOW;

begin
OPEN(A,l,n,l,n,"A-file");
OPEN(B, 1 ,n, 1 ,m, "B-f ile") ;
OPEN(X, 1 ,n, 1 ,m,"X-f ile") ;
CREATE(A-windov,n,n,R,O,O,A,FALSE);

SET(A-window,l,l);
for i in l..n-1 loop

end loop;

-- Large array A is n x n; its external file name is A-file. - Large array B is n x m; its external file name is B-file. - Large array X is n x s; its external file name is X-file. - Create A-window as an n x n window on A; - A-window never moves, so its move increments are 0. - Position A-window to cover all of A.

SOLVE(1) .WO_An_I(NATURAL(i)); - Inform each of the SOLVE tasks of its id number.
end MAIN;

separate (MAIN)
task body MAIN-BACK-SOLVE is

B-window, X-window: WINDOW;
A-sw: SUBWINDOW;

begin
CREATE(A-sw,n,l,l,n,R,A-window);

CREATE(X-window,l,l,W,O,l,X,FALSE);

- Create A-sw as an n x 1 read-only subwindow on the - nth column of A-window. - Create X-window as a 1 x 1 write-only window on X; - set the move increments to (O,l), i.e., move along - a row, one column at a time. - Position X-window at row n, column 1 on X. - Create B-window as an n x 1 read-only window on B; - set the move increments to (O,l), as noted above. - Position B-window at raw 1, column 1 of B.

SET(X-window,n,l);
CREATE(B-window,n,l,R,O,l,B,FALSE);

SET (B-window, 1,l) ;
solve-cycle:

loop
X-window(l.1) := B-window(n,l) / A-sw(n,l); - Calculate the nth element of the x vector
SOLVE(n-1) .MORE; - Signal the left neighbor, subtask n-1,
for i in l..n-1 loop

end loop;
MOVE (B-window) ;
MOVE (X-window) ;
if EOS(B-window) /= 0 then

end if;

- and write it in the X-window.
- that more is to be done. - Pass the partially calculated x values on to the left neighbor.

SOLVE(n-l).NEXT(B_window(i,l) - A-sw(i.1) * X-window(1,l));
- Move the B-window one column to the right. - Move the X-window one column to the right.

exit solve-cycle -- Exit if processing of right sides is complete, i.e., - if B-window is outside of the B array.
end loop solve-cycle;

end MAIN-BACK-SOLVE;

.

-24-

separate (MIAIM)
task body BACK-SOLVE is

X-window: WINDOW;
A-sw: SUBWZHMIW;
id: NATURAL;
partial-x: array(l..n) of float;

.
begin

accept WRO_AM_I(self-id: NATURAL) do

end WHO-4M-I;
CREATE (A-sw,n, 1,1, id ,R,A-window) ;

CREATE(X-window,l,l,W,O,l,X,FALSE);

- Find out your cnin id.
id :- self-id;

-- Create A-sw as an n x 1 read-only subwindow - on the id'th column of A-window. - Create X-window as a 1 x 1 write-only window on X; - set the move increments to (O,l), i.e., move along

-- Position X-window at the id'th row, 1st column of X.
a row, one column at a time.

SET(X-window,id,l);
loop

select
accept M R E do end MORE; - Wait for more processing signal.

for i in l..id loop - Accept id partial x vector values from right neighbor.
accept NEXT(x: float) do

end NEXT;
partial-x(i) :- x;

end loop;
X-window(l,l) := partial-x(id) / A-sw(id.1); - Calculate the id'th element of the - x vector and write it in X-window.
SOLvE(id-1) .MORE;
for i in l..id-1 loop -- Pass partial x vector values to left neighbor.
end loop;
MOVE (Xrindow) ;

- Signal left neighbor subtask that more work is ready.
SOL~(id-l).NEXT(partial_x(i) - A-sw(i,l) * X-window(1,l));

- Move X-window one column to the right.

- Terminate when all subtasks are waiting for more work. Or
terminate;

end select;
end loop;

end BACK-SOLVE;

-25-

